Identification of a lipid scrambling domain in ANO6/TMEM16F

نویسندگان

  • Kuai Yu
  • Jarred M Whitlock
  • Kyleen Lee
  • Eric A Ortlund
  • Yuan Yuan Cui
  • H Criss Hartzell
چکیده

Phospholipid scrambling (PLS) is a ubiquitous cellular mechanism involving the regulated bidirectional transport of phospholipids down their concentration gradient between membrane leaflets. ANO6/TMEM16F has been shown to be essential for Ca(2+)-dependent PLS, but controversy surrounds whether ANO6 is a phospholipid scramblase or an ion channel like other ANO/TMEM16 family members. Combining patch clamp recording with measurement of PLS, we show that ANO6 elicits robust Ca(2+)-dependent PLS coinciding with ionic currents that are explained by ionic leak during phospholipid translocation. By analyzing ANO1-ANO6 chimeric proteins, we identify a domain in ANO6 necessary for PLS and sufficient to confer this function on ANO1, which normally does not scramble. Homology modeling shows that the scramblase domain forms an unusual hydrophilic cleft that faces the lipid bilayer and may function to facilitate translocation of phospholipid between membrane leaflets. These findings provide a mechanistic framework for understanding PLS and how ANO6 functions in this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TMEM16F Forms a Ca2+-Activated Cation Channel Required for Lipid Scrambling in Platelets during Blood Coagulation

Collapse of membrane lipid asymmetry is a hallmark of blood coagulation. TMEM16F of the TMEM16 family that includes TMEM16A/B Ca(2+)-activated Cl(-) channels (CaCCs) is linked to Scott syndrome with deficient Ca(2+)-dependent lipid scrambling. We generated TMEM16F knockout mice that exhibit bleeding defects and protection in an arterial thrombosis model associated with platelet deficiency in Ca...

متن کامل

Structure and function of TMEM16 proteins (anoctamins).

TMEM16 proteins, also known as anoctamins, are involved in a variety of functions that include ion transport, phospholipid scrambling, and regulation of other membrane proteins. The first two members of the family, TMEM16A (anoctamin-1, ANO1) and TMEM16B (anoctamin-2, ANO2), function as Ca2+-activated Cl- channels (CaCCs), a type of ion channel that plays important functions such as transepithe...

متن کامل

Single-molecule analysis of phospholipid scrambling by TMEM16F

Transmembrane protein 16F (TMEM16F) is a Ca2+-dependent phospholipid scramblase that translocates phospholipids bidirectionally between the leaflets of the plasma membrane. Phospholipid scrambling of TMEM16F causes exposure of phosphatidylserine in activated platelets to induce blood clotting and in differentiated osteoblasts to promote bone mineralization. Despite the importance of TMEM16F-med...

متن کامل

Functional swapping between transmembrane proteins TMEM16A and TMEM16F.

The transmembrane proteins TMEM16A and -16F each carry eight transmembrane regions with cytoplasmic N and C termini. TMEM16A carries out Ca(2+)-dependent Cl(-) ion transport, and TMEM16F is responsible for Ca(2+)-dependent phospholipid scrambling. Here we established assay systems for the Ca(2+)-dependent Cl(-) channel activity using 293T cells and for the phospholipid scramblase activity using...

متن کامل

Both TMEM16F-dependent and TMEM16F-independent pathways contribute to phosphatidylserine exposure in platelet apoptosis and platelet activation.

Scott syndrome, a bleeding disorder caused by defective phospholipid scrambling, has been associated with mutations in the TMEM16F gene. The role of TMEM16F in apoptosis- or agonist-induced phosphatidylserine (PS) exposure was studied in platelets from a Scott syndrome patient and control subjects. Whereas stimulation of control platelets with the BH3-mimetic ABT737 resulted in 2 distinct fract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015